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must be assigned all along the routing path of any SLD; at any
time, a given wavelength on a given edge of the network cannot be
used to satisfy more than one SLD. To solve this problem, we study
an approach stating the problem as the successive searches of
independent sets in some conflict graphs. Moreover, we improve
this approach thanks to a post-optimization method. The
experimental results show that this model and the post-optimization
method are quite efficient to provide a large number of routed SLDs.
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1. Introduction

In this paper we deal with a problem related to the routing and wavelength
assignment problem (RWA) in wavelength division multiplexing (WDM)
optical networks (see for instance Mukherjee (2006) or, for more recent
references on these networks, Chadha (2019); see Cheng et al. (2006) or
Resende and Pardalos (2006) for references on optimization problems in
telecommunications). Fiber-optic technology using WDM offers the potential
of dividing the bandwidth of a fibre into several channels, each at a different
optical wavelength, permitting to carry data in parallel. More precisely, a
WDM optical network is represented by an undirected graph G, and a number
W of available wavelengths. We consider a set S of n scheduled lightpath
demands (SLD) to be established in this network (see Kuri et al. (2003)): an
SLD s belonging to Sis characterized by a quadruplet s = (z, y, o, B) where:

! Télécom-Paris & LTCI, Palaiseau, France. E-mail: oliwicr.hudry@telecom-paris. fr

To cite this article:
Olivier Hudry. Maximizing the Number of Scheduled Lightpath Demands in Optical Networks
by Conflict Graphs. International Journal of Mathematics, Statistics and Opcrations

Rescarch, 2021. 1(1): 75-99



76 OLIVIER HUDRY

e zand y are two nodes (or vertices) of G,
e o and B denote the set-up and tear-down dates of the demand.

In order to satisfy an SLD s, we must find a path P between z and yin G,
and reserve a wavelength w_along all the edges of this path and during all the
timespan [o, B]. The constraints related to the optical network are the following:

e The same wavelength must be used on all the edges used by a lightpath
(otherwise wavelength converters are required, which involves large
expenses and changes the nature of the problem: the aim is then to
determine the placement of these converters so that the overall network
cost is minimized; see for instance Chu et al. (2002)).

e At any given time and for any edge of G, a same wavelength cannot be
used to established several connection demands; in other words, if two
demands overlap in time, they can be assigned the same wavelength if
and only if their routing paths are disjoint in edges.

A usual problem dealing with SLDs (see Kuri et al. (2003) or Zang et al.
(2000); see Nazir and Arora (2019) for a recent survey on RWA) consists in
looking for the minimum number of wavelengths necessary to establish all the
SLDs. This problem and several variants are NP-hard (see Chlamtac et al.
(1992) and Erlebach and Jansen (2001)). Chlamtac et al. (1992) proposed a
first greedy heuristic to solve this problem. Then many other methods have
been designed in the 1990’s and after in order to provide approximate solutions
(see for instance Choi et al. (2000), Dutta and Rouskas (2000), Zang et al.
(2000), Kuri et al. (2003) or still Mukherjee (2006)). In 2006, Skorin-Kapov
(2006) proposed a very efficient heuristic for this problem; our study is partially
based on her heuristic (see Section 2). Integer linear programming and exact
solutions have also been provided (see for instance Kumar and Kumar (2002),
Ozdaglar and Bertsekas (2003), Jaumard et al. (2006), Mukherjee (2006) or
Skorin-Kapov (2006)...). Several mathematical formulations have also been
developed (see Ramaswami and Sivarajan (1995), Krishnaswamy and Sivarajan
(2001), Lee et al. (2002), Jaumard et al. (2009)...).

In this paper, we consider another problem, anyway related to the usual
one: given the graph, the set S of SLDs and the number W of available
wavelengths, we want to determine a lightpath (a path and a wavelength)
for as many SDLs of S as possible. Observe that this maximization problem
allows also solving the usual one: indeed, if we want to determine the minimum
number of wavelengths necessary to route all the SLD’s, it is sufficient to
vary the number W of wavelengths until this number is great enough to

route all the SLDs of S.
In Section 2, we describe a greedy algorithm in order to try to maximize
the number of SLDs that we can route with a given number of wavelengths.
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Then we study in Section 3 a way to solve this problem formulated as the
successive search of independent sets in conflict graphs. These independent
sets are computed by means of an iterative improvement method (or descent
algorithm). These two heuristics (the greedy one and the one using
independent sets) are improved by a post-optimization method (Section 4).
After having specified the experimental framework, we perform a preliminary
study on a graph and an SLDs set in order to tune some parameters and to
select the most efficient methods. Then we extend these results to other
data sets (Section 5). Conclusions are finally presented in Section 6.

2. Greedy Method

In this paper, we consider first a greedy algorithm adapted from the method
proposed by N. Skorin-Kapov (2006). Her method was originally designed
to handle a more sophisticated version of the RWA of SLDs in which a
connection may require several wavelengths to be established.

In our case, the greedy method works as follows. Let w be the current
wavelength: we start with w = 1 and if w > 1, we assume that some SLDs
have already been established using previous wavelengths. Then we determine
the SLDs to which w will be assigned. We consider in turn the non-already
established SLDs (following some predefined order). Let s = (z, y, o, B) be
the current SLD. We consider a graph H(s) obtained from G by removing all
the edges of the lightpaths already established with wavelength w and such
that the associated SLDs overlap in time with s. Therefore H(s) contains
only edges that can be used to route s without generating any conflict with
previously established SLDs. So we just search for a shortest path between
z and y in H(s); if such a path exists, it is assigned to s with wavelength
w, otherwise s remains non-established for the time being. When all the
SLDs have been considered with w, we start again the process with wavelength
w + 1. The algorithm stops when all the SLDs have been established or
when there is no remaining available wavelength (w = W).

This method will be referred to as G in the remainder. Its pseudo-code
is given in Figure 1.

The order in which the SLDs are considered can be very important. In
Skorin-Kapov (2006), the author proposes to sort the SLDs in decreasing
order with respect to the number of required wavelengths (as mentioned
previously, she deals with a version of the RWA of SLDs in which a connection
may require several wavelengths to be established). The experimental results
presented in Skorin-Kapov (2006) about this problem show that her algorithm
provides generally very good results, very often optimal or nearly optimal.

For our problem, we can for instance sort the SLDs with respect to:
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Input: A network G; a set S of SLDs; a number W of wavelengths 1, ..., W.
Output: For each s € S: a lightpath (P, ws) with Ps=0if wg=W +1
Tor any s € 9, do: (D5, ws) « (B, W +1)
w0
S_satis fied < ()
While (w < W) and |S_satis fied| < |S]
w—w+1
For s € S\ S_satisfied with s = (z,y, o, 8)
H(s) + G
For s’ € S_satisfied with s’ = (2/,9/,d/, B')
If wg =w and [a, 8] N[/, 5] #0
Remove the edges of Py from H(s)
Tf there exists a shortest path Ps between 2 and y in H(s)
Assign the lightpath (Ps, w) to s
S_satisfied < S_satisfied U {s}

Figure 1: Greedy algorithm G

e arandom order,
e the increasing or the decreasing order of the width of time intervals,

e the increasing or decreasing order of the distance between the source-
destination nodes of the SLD (measured by the number of edges of a
shortest path).

We found that the results obtained with these different orders are similar
in average. So we chose to consider the SLDs in a random order, which
permits to introduce a stochastic aspect (two runs of the method may
provide different solutions). This will allow a fair comparison between the
methods, since we could repeat them as many times as necessary to take
advantage of a given amount of CPU time. Of course, the solution returned
by such a repetition of a given method will be the best one computed over
the different runs.

3. Heuristic Based on the Search of Independent Sets in Conflict Graphs

We describe in this section a model of the RWA problem which amounts to
determine successively some independent sets of maximum cardinality in
appropriate graphs referred to as conflict graphs (Section 3.1). Then we
propose in Section 3.2 a heuristic based on a descent approach (also called
iterative improvement method) in order to compute some large independent
sets in these graphs.
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3.1 Description of the Conflict Graphs

In order to formulate the RWA of SLDs as the determinination of independent

sets, we start by choosing a number k between 1 and a few units (for

instance 5; the experiments—see Section 5.3—show that greater values for k

require more CPU time without improving the quality of the computed

solutions). Then we compute, for each SLD s to be established, the kshortest
paths between the origin and destination nodes zand y of sin G (we can use
for instance Yen’s algorithm; see Yen (1971); other algorithms of smaller
complexity but more difficult to implement exist—see Eppstein (1998) for
instance—but, since the number % is quite small, it is not worth considering
them here). Now that we have determined % shortest paths for each SLD (or
less if there exist less than k paths from z to y in G), we build a new graph

C, (which will be the conflict graph mentioned above) with N, = n x k

vertices. To any pair (s, p) consisting of an SLD s and one of its corresponding

k shortest path p, we associate a vertex v(s, p) in the conflict graph C,. Two

vertices v(s , p,) and v(s,, p,) will be joined by an edge if:

e s = s,and p # p,; in other words, the k vertices associated with the
same SLD form a clique;

e 5 # 5, and the timespan of s and s, overlap, and the paths p, and p,
have at least one edge in common; that means that the connection
requests s, and s, cannot be routed with p, and p, and be assigned the
same wavelength.

Once we have built the conflict graph C, we wish to determine an
independent set in C, of maximum cardinality. Since the conflict graph C, may
contain many vertices, and since the determination of a maximum independent
set is an NP-hard problem (see Garey and Johnson (1979)), we do not try to
solve this problem exactly, we just apply a heuristic (see below).

After obtaining a first independent set (of cardinality as large as possible)
in C,, we establish, for each vertex v(s, p) of this set, the corresponding SLD
s using the wavelength 1 and the path p. Then we remove from the conflict
graph all the vertices corresponding to the established SLDs (for each SLD,
we remove its associated clique). We obtain therefore a new conflict graph
associated with the SLDs which are not yet established, and we repeat the
same process with the following wavelength until all the SLDs are established
or all the wavelengths have been considered. Observe that we do not seek to
partition the set of vertices of C, into independent sets, since we just need to
choose one vertex of each clique associated to an SLD in order to establish

this one; so our model does not amount to a colouring problem, as in Noronha
and Ribeiro (2006).



80 OLIVIER HUDRY

3.2 Descent algorithm for the computation of an independent set in the
conflict graph

In order to determine some independent sets as large as possible in the
conflict graph, we chose to apply a descent algorithm. First we examined
some more sophisticated metaheuristics such as the simulated annealing,
but the high computation time required to make profitable such a method,
as well as the difficulty relative to the tuning of the parameters, led us to
give up this type of tough approaches. The objective of the algorithm is to
find a large independent set, though not necessarily of maximum cardinality,
in the conflict graph.

The principle of the method is the following. We start from an independent
set I of cardinality 1 (by choosing any vertex), and we try to determine an
independent set [, of cardinality 2, then an independent set I, of cardinality
3, and so on, until such a set cannot be found for some cardinality a; then
the independent set I | of cardinality o — 1 is retained.

During this process, when an independent set I of cardinality o has
been obtained, we try to build the independent set I by adding to [ a
vertex drawn randomly. We obtain a set T of vertices; generally there exist
some edges between the added vertex and some vertices of I , and therefore
T'is not an independent set (otherwise [ ., = T and we move to the next
step). Then we modify T by applying some elementary transformations
(defined in the following section) that transform 7 into other sets of the
same cardinality. Hence the determination of an independent set of cardinality
o amounts to the minimization of an objective function defined as the number
of edges that join two vertices of T: T will be an independent set if this
number is equal to zero. This minimization problem is solved by a descent
algorithm described below.

3.2.1 Description of the descent method

As we have just mentioned, the application of a descent to our problem
requires the definition of an elementary or local transformation (see for
instance Glover and Kochenberger (2003) or Dreo et al. (2006)) permitting
to move from the current set T to another set of the same cardinality.
The chosen elementary transformation consists in replacing one of the
vertices of T by another vertex of the conflict graph which is not in T.
The new set T' thus obtained from T is a “neighbour” of T. If the
cardinality of T'is a, T has a x (N, — a) distinct neighbours, where N,
still denotes the number of vertices of the conflict graph C,, forming the
neighbourhood of T.
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We say that an elementary transformation from Tto 7" is favourable if
it does not worsen the objective function, z.e. if the number of edges between
the vertices of T" is not greater than the number of edges between the
vertices of T. More precisely, let ¢t and z be the exchanged vertices, with
teT,z¢ T, teg T and z € T'. Let q (respectively ¢') be the number of
edges between ¢ (resp. z) and the other vertices of T (resp. T"). The variation
A(t, 2) of the objective function generated by the elementary transformation
from Tto T’ is equal to A(Z, 2) = ¢ — ¢. The transformation is favourable if
A(t, z) <0, or equivalently if ¢ < q.

The principle of the descent algorithm is the following. We start from an
initial set T of a vertices of the conflict graph. Then we undertake the
exploration of the neighbourhood of T by drawing randomly two vertices ¢
(in T) and z (not in T) following a uniform probability distribution. As soon
as we have found one elementary transformation that is favourable, we
apply it to T and so we move from 7T to one of its neighbours. We repeat
this process until either the objective function becomes equal to zero, which
means that an independent set of cardinality o has been found, or all
neighbours of T are discarded.

This last stop condition is defined by a maximum number of neighbours
to be examined. The role of this number is twofold; first it permits to end
the algorithm when none of the trials has been favourable and the objective
function is still positive. In this case the method fails to provide an
independent set. Second, since an elementary transformation that involves
no variation of the objective function is considered as favourable, and so
accepted, we may otherwise get stuck inside a loop, going from one set to
one of its neighbours and then coming back to the initial set. The definition
of a maximum number of neighbours to be examined prevents us from such
a phenomenon. We set this number proportional to the size of the
neighbourhood of 7', i.e. as y x a x (N, —a). The proportionality coefficient
v is defined as a parameter of the method; its value must be fixed beforehand.
Some preliminary experiments have been performed on a given instance
(see Section 5.2) in order to determine the most suitable value of y; this
value has been kept for all the experimental studies carried out in this
paper.

Some variants of the descent method have been tested, in particular the
one where only strictly improving transformations are accepted, or variants
including other ways to explore the neighbourhoods. We obtained similar
results, no better than the results provided by the method described above,
so we chose not to present those variants.
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Input: A conflict graph C, on N, vertices; a set T of a vertices of C,;

Output: If possible, an independent set T of o vertices of C,; otherwise, a set T of a vertices of C,
in which we tried to minimize the number of edges.

i1

While i <y X a x (N, - a) and T is not an independent set
Draw a vertex t of C_ belonging to T with a uniform probability
Draw a vertex z of C, not belonging to T with a uniform probability
Compute the number ¢ of edges between t and T \{t}
Compute the number ¢’ of edges between z and T \{t}
If ¢ — ¢<0, then T« (T \{t}) u {2}
i i+ 1

Figure 2: The descent algorithm for the search of an independent set with a given cardinality

When the descent is over, either the current set T'is an independent set
of cardinality o, or it remains some edges in T. In the first case, we add a
new vertex to T and we repeat the descent algorithm in order to find an
independent set of cardinality o + 1. In the second case, the process ends
and we consider the last obtained independent set (of cardinality o — 1) as
the final solution given by the method.

The pseudo-code of the descent algorithm for the search of an independent
set with a given cardinality is presented on Figure 2, and the pseudo-code
concerning the whole method to compute an independent set with a large
cardinality is given in Figure 3.

3.2.2 Improvement of the descent method thanks to the greedy
heuristic

For each wavelength w, after applying the descent algorithm, we try to
improve the obtained solution thanks to the greedy method described in
Section 2. More precisely, we consider the SLDs still unsatisfied after the
application of the descent, and we look for a path permitting to route each
one of them with the wavelength w without changing the already-established
SLDs. This is possible if there exists a path between the source and destination

Input: A conflict graph C, on N, vertices.
Output: An independent set T of C, with a cardinality as large as possible.

T < {2} where z denotes any vertex of C,

While T'is an independent set of C,
T« T
T < T U {y} where y denotes any vertex of C, which does belong to T'
Apply the descent of Figure 2 to T

Figure 3: The descent-based algorithm to compute an independent set witha large cardinality
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nodes of the considered SLD s which does not contain any edge belonging to
the already-established lightpaths associated with w and that overlap in
time with s. This may arise since we considered only a small number % of
shortest paths between each source-destination pair when building the conflict
graph. So even if there was no possibility to route s when considering the
conflict graph, there may still be some suitable path in the initial network
g

The pseudo-code of the global method (repeated descent methods with
the greedy improvement) is presented in Figure 4. Since this method is
based on the conflict graphs, that are obtained with respect to the value k
of the number of considered shortest paths, it will be denoted as D,. When
k varies, we obtain as many descent methods noted D1, D2, D3, etc.

4. A Post-optimization Method

The post-optimization method presented in this section aims at improving
the results provided by the greedy heuristic or by the descent depicted
above, though it can be applied to any heuristic permitting to solve the
addressed problem or other variants of this problem, as done with success in
Belgacem et al. (2014) for the usual problem of computing the minimum
number of wavelengths necessary to satisfy all the SLDs.

Input: A network G; a set S of SLDs; an integer £;
a number W of available wavelengths 1, ..., W.
Output: For each s € S: a lightpath (P, wg) with Py = if wy = W + 1
For any s € S, do (Ps,ws) < (0, W +1)
S’u,nsa,l,isf’ir’d « S
For w varying from 1 to W with a step of 1
Build the conflict graph Cj, associated with G, k and Sy;sa1is fied
Compute an independent set T of Cy, as large as possible
by applying the method of Fignre 3
For any vertex (s,p) of T*
(Ps, ws) < (p,w)
Sunsabis[ied <~ Sunsutis[ied \ {S}
For s € Synsatisfica With s = (z,y, a, )
H(s) G
For s’ satisfied with s’ = (2/,y/,a/, 3)
If wy =w and [o, ] N[, 3] # 0
Remove the edges of Py from H(s)
If there exists a shortest path p between 2 and y in H(s)
(Ps. ws) + (p,w)
Sunsalis]'ied — Sunsalis[’ied \ {5}

Figure 4: The descent-based algorithm D, for the computation of successive independent sets in order
to satisfy as many SLDs as possible, with the improvement brought by the greedy algorithm
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The principle of this method is the following. First, we create an extra
wavelength W + 1 which is fictitiously associated with all the unsatisfied
SLDs (there is no path associated with these SLDs); notice that it is what
we did for the greedy heuristic G or for the descent methods D, above. For
any we {1,2, ..., W, W+ 1}, let the layer L(w) be the set of the SLDs with
w as their wavelengths. We try to empty L(w), at least partially, the ultimate
aim being to empty L(W + 1) as much as possible. This is done, for w > 1,
by trying to assign a smaller wavelength (1, 2, ..., w — 1) to the demands
belonging to L(w), which leads us to rearrange the wavelengths assigned to
the SLDs of these lower layers. So, during this operation, the layers of some
SLDs change but all of them must remain inside the interval [1, w — 1]. To
empty L(w), even only partially, may allow us to route some unsatisfied
SLDs when we will try to empty L(W 4 1) in its turn and, globally, this
operation will increase the number of routed SLDs.

More precisely, let s = (z, y, o, B) be the demand that we would like to
move from its current layer L(w) to a lower layer L({) (¢ € [1, w—1]). It is
very likely that some of the demands belonging to L({) prevent us from
routing s with this wavelength. In other words, if we delete from G all the
edges used to establish the demands of this layer that overlap sin time, we
may find no path joining z and .

To avoid this, we remove some SLDs from L(¢). More precisely, we
consider the SLDs of L(() greedily in any prescribed order: s, s,, ..., S50/
For each such SLD s,(1 <4< [L({)|), we build a graph H as follows. We start
with G and se set H, = G. When dealing with s, let P be the path associated
with s If the deletion of the edges of P, from H_ _ does not prevent us from
finding a path between x and y, then we delete them in order to obtain H.:
H,= H_,\P; in this case, s, remains inside L((). Otherwise, we remove s,
from L(/), we put it aside in a set I and we do not change the graph H: H,
= H,_,. Thus, once all the demands of the layer L({) have been examined, it
becomes possible to route s using the wavelength ¢ since all the conflicting

lightpaths have been (at least temporarily) removed.

We must now deal with the demands of F: we try to place each of these
demands in one of the layers 1, ..., w— 1, without modifying the routing of
any other SLD. If a layer can be found for each demand of E, then we have
finished with the demand s: s remains in the layer L({), with a lightpath
compatible with the ones of the other SLDs of this layer, and we move up to
the following demand of the layer L(w). Otherwise we consider that the
attempt to move s to the layer L({) has failed, and we try to move it to the
next layer L(¢ + 1). If all the layers from L(1) to L(w — 1) have been
examined in vain, s remains inside the layer L(w), and we move up to the
following demand of L(w).
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This method, summarized in Figure 5, is referred to as the
post-optimization algorithm. Let us notice that even if a rearrangement of
the layers does not permit to decrease the number of unsatisfied SLDs, it
may happen that repeated applications of the algorithm succeed to do so,
because the SLDs are not dispatched in the layers in the same manner from
one application to another. In the experiments presented below, we chose to
repeat the post-optimization algorithm until two consecutive runs do not
increase the number of routed SLDs. This choice is based on an experimental
observation and arises from a compromise between CPU time and the quality
of the computed solutions.

In the following, if M denotes a method, M+ will denote the application
of M followed by the application of the post-optimization algorithm to the
results provided by M. Thus we obtain the methods G+, D1+, D2+, etc.

5. Experimental Results

5.1 Experimental Framework

We present below the results obtained for 18 instances. These instances are
based on two graphs, which are often used to illustrate RWA problems:
e  G57 (b7 vertices and 85 edges), extracted from the European optical

transport network (see Figure 6);

e G29 (29 vertices and 44 edges), representing a hypothetical North-

American backbone network (see Figure 7).

We then generate two sets of demands for each considered network,
with respectively 500 and 1000 SLDs. We thus obtain four pairs (graph, set
of SLDs). The name of each pair is obtained by the concatenation of the
name of the network with the number of SLDs to route: Gb7-500 denotes
the pair for which the network is G57, with 500 SLDs; similarly, the other
three pairs are denoted G57-1000, G29-500, and G29-1000. When dealing
with 500 SLDs, we consider four values for W: 5, 10, 20, and 30; when
dealing with 1000 SLDs, we consider five values for W: 10, 20, 30, 40, and
50. Hence a total of 18 instances (g, S, W).

The sets of SLDs are generated randomly so that the number of time-
overlaps is significant but not too large: if they are too few, there are few
clashes between the demands and therefore the addressed problem becomes
too easy; to the contrary if the time-overlaps are too numerous, the number
of required wavelengths increases greatly and the problem becomes again
less interesting. According to our experiments, this can be achieved by
drawing the source and destination nodes of each SLD s = (z, y, o, B)
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randomly with a uniform distribution of probability over all the vertices of
the considered graph (of course the two nodes must be different). The setup
time o and tear-down time B of s are chosen in [O, 1000]; the centre c of the
interval is a real number drawn uniformly in [L, 1000 — L], with L equal to
300 for 500 SLDs or to 250 for 1000 SLDs. The time-window of s is then of
the form [¢— L x 7%, ¢ + L x 1%, where ris a real number drawn uniformly
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Input: A network G; a set S of SLDs; a number W of wavelengths 1,..., W
a fictitious wavelength W + 1
for each s € S: a lightpath (Ps,w;) with Py =0 if wy =W +1
Output: for each s € S: a lightpath (f{,u].) with B, =0 if @y =W + 1
w2
While w < W +1
For s € S with s = (z,y, «, 3) and with wy = w
For £ [rom 1 o w—1
E«1
H«+—G
For s’ € S with ' = (2/,y/. o/, #') and with wy = ¢
If [, BN [/, 8] # D
Delete the edges of Py N'H from H
If there exists no path between z and y in H
Remove s’ from layer L({) and put s’ in E
Restore the removed edges of Py in H

Compute a shortest path p between x and y in H
(Ps, ws) + (p,£)
For ' € E with ' = (z/,y',a/, 8')
For A from 1 tow — 1
H(s')+ G
For 8" € S with s = (2,4",a", 8") and with we = A
If [o,8Na”,8"1£0
Delete the edges of Py from H(s')
If there exists a shortest path p between 2’ and 3’ in H(s')
(}—)S': ’U.[.;/) — (pv /\)
Exit the A-for loop and move up to the next demand s’
If s’ has not been established
Put back all the demands of E in layer L(¢)
with their initial lightpaths
Restore the initial lightpath for s
Exit the s’-for loop and move up to the next layer L(£ + 1)
to try to add s inside layer L(£+ 1)
wé—w—+1
Foreach s € §
Ifws AW +1 (P57‘IZ’5) — (Ps,ws)
Else (P, @) + (B, W +1).

Figure 5: The Post-optimization Algorithm

between 0 and 1.
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In the next sections, we present the results provided by the heuristics
described above when applied to these 18 instances. We performed other

experiments, dealing with other graphs, other sets of SLDs, or other numbers
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of wavelengths: they lead to the same qualitative conclusions. The experiments
have been performed on Solaris Sun stations (Sun Ultra 20M2 3 Ghz dual
core AMD). In order to evaluate the heuristics on these instances, we have
carried out 100 runs of each method for each instance and we compute, over
the 100 runs:

e the average CPU time;

e the average number of SLDs that we succeeded to route;

e the maximum and minimum numbers of routed SLDs.

In order to compare two methods M and M', we will write M < M' to
mean that M provides better results than M: the average number of SLDs
satisfied by M is greater than the average number of SLDs satisfied by M.
Moreover, to measure the relative improvement brought by a method M
with respect to &, we will consider the quantity (N,, — N_)/N,, where N,
(respectively N,) denotes the number of SLDs satisfied by M (respectively
by G).

5.2 Preliminary Study on One Instance

In this section, we consider the results obtained when applying different
variants of the methods described above on the instance G57-500, with
W = 20 wavelengths. The objective is to identify the assets of each variant,
and select the methods that will be studied more intensively in the remainder.

We start first by fixing the number of neighbours examined in each
descent iteration, or more precisely, the value of y. For example, let us
consider the method D1, with different values of y; the obtained results are
presented on Table 1 (for each value of y, we give the average number of
satisfied SLDs and the average time in seconds when considering 100 runs of
D1). These results are displayed on Figure 8, where the z-axis corresponds
to the values of y, and the y-axis denotes the average number of satisfied

SLDs.

We can observe that the quality of the method does not increase much
with y, whereas the required computation time increases regularly. So we
chose to fix ¢y = 3 as a compromise between a good quality and a reasonable
time. Similar studies have been done with other instances and other variants
of the method, and this value seemed a fair choice for every case. This
setting will be used for all the experiments presented in the remainder.

Let us now estimate the interest of the post-optimization algorithm by
considering the twelve following methods :

e the greedy method G;
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Table 1: Tuning of y

v 1 2 3 4 5
Av. # of routed SLDs 409.79 410.41 410.74 410.84 410.95

CPU Time (in seconds) 0.14 0.205 0.257 0.308 0.355

v 10 15 20 25 30 35
Av. # of routed SLDs 411.30 411.33 411.49 411.48 411.60 411.55
CPU Time (in seconds) 0.575 0.788 0.991 1.191 1.597 1.579
412 +

411 L

410 L

| | | | |
15 20 25 30 35
Figure 8: Tuning of y
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12345

e the greedy method combined with the post-optimization algorithm G+;

e the five descent methods D1, D2, D3, D4 and D5 (remember that
D, denotes the descent described above where k shortest paths are
considered for the generation of the conflict graph);

e the same five descent methods combined with the post-optimization
algorithm: D1+, D24, D3+, D4+ and Db5+.

For each case, we computed the average number of satisfied SLDs over
100 runs and we kept the worst result as well as the best one. Those results
are presented in Figure 9; each value (worst, average and best) is represented
by a small line. Moreover, Table 2 specifies the average number of satisfied
SLDs over the 100 runs, the relative gain with respect to G (except for the
method G itself), and the average computation time in seconds.

Those results show that it is clearly better to apply the post- optimization
algorithm since it permits to establish several additional connection requests.
The extra time required by the post-optimization is quite small (a few
seconds). For the descent methods, especially for D4 and D5, this time is
negligible in comparison with the time necessary to perform the descents.
To the contrary, when comparing G and G+, almost the whole consumed
time is devoted to the post-optimization method.
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Figure 9: Results for the twelve methods applied to G57-500 with W = 20

In the light of these results (corroborated by similar studies performed
on other instances), we will keep for the remainder the methods G, G+,

D1+, D2+, D3+, DA+ and D5+.

5.3 Other Results for G57-500

Let us now consider the instances associated with the network G57-500 and
different values of the number of available wavelengths W: 5, 10, 20 or 30.
Table 3 gives the average results when applying 100 runs of each method.
The first column, labelled W, indicates the number of avalaible wavelengths;

Table 2: Average number of satisfied SLDs and average CPU time for the twelve methods applied
to G57-500 with W = 20

Method G D1 D2 D3 Dy D5
Av. # of routed SLDs 388.59 410.64 413.44 416.37 418.57 420.06
Improvement wr.t. G 57 % 6.4 % 71 % 77 % 8.1 %
CPU time (seconds) 0.02 0.26 1.21 321 6.12 11.73
Method G+ D1+ D2+ D3+ D4+ D5+
Av. # of routed SLDs 404.72 425.34 426.35 427.58 428.69 429.13
Improvement w.r.t. G 42 % 9.5 % 9.7 % 10 % 10.3 % 104 %

CPU time (seconds) 1.91 2.28 3.28 5.11 8.04 12.27
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Table 3: Results for G57-500 and different values of W

w G G+ Di+ D2+ D3+ D4+ D5+
5 189.25 198.73 260.97 262.70 264.24 265.16 264.93
5% 379 % 38.8 % 39.6 % 40.1 % 40 %
0.007 0.34 0.63 1.67 3.11 5.86 9.22
10 277.05 290.85 340.74 341.99 344.71 345.41 346.28
5% 23 % 23.4 % 24.4 % 24.7 % 25 %
0.013 0.77 1.11 1.20 3.89 7.54 10.36
20 388.59 404.72 425.34 426.35 427.58 428.69 429.13
42 % 95 % 9.7 % 10 % 10.3 % 10.4 %
0.020 191 2.28 3.28 5.11 8.04 1227
30 44430 458.10 465.36 466.45 466.47 466.66 466.76
31 % 4.7 % 5 % 5% 5% 51 %
0.024 2.42 2.83 3.83 6.57 10.05 12.76

for each of these values, the first row specifies the average number of
established SLDs, the second row gives the gain with respect to the basic
greedy heuristic GG, and the third row gives the CPU time in seconds.

According to these results, the ranking of the methods with respect to
the number of satisfied SLDs is: G < G+ < D1+ < D2+ < D3+ < D4+ <
D5+, with a significant gap between, on the one hand, the greedy approaches
G and G+ and, on the other hand, the descent methods D1+ to D5+. This
gap is the larger as the number of available wavelengths is small: for W =15,
the improvement with respect to G reaches 40 % for D4+ and D5+.

We can observe that the computation time required by the various
methods are very different. In order to perform fair and easier comparisons,
we propose to repeat each method until a certain amount of time (the same
for all the methods) is reached.

The results obtained following this methodology for W = 20 are presented
in Table 4, labelled Comparison in triangle (this representation will be used
again in the remainder). The first row gives the name of the considered
methods. The second row gives the time required by the greedy method
G (0.02 s), and the average number of satisfied SL.Ds over 100 runs (388.59)
for G. The third row gives first the average time T necessary to run G+,
and then the average result (number of satisfied SLDs) obtained by repeating
G until reaching the time T over 100 runs, and finally the average result for
G+. Let us recall that when repeating a method, the returned value is the
best value found over all the repetitions, so we consider the average of these
best values when considering 100 runs of the repeated method. More generally,
the first cell of the row ¢ specifies the CPU time T required by one run of the
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method which is in the column ¢ of the table. Then we give the average
results when repeating the methods that are faster than the current method
until the time T'is reached, and the last value of the row corresponds to the
average result for the current method. The last row presents the average
results when all the methods are repeated during 1 minute.

We observe in Table 4 that even with equivalent time, the ranking of the
methods from the least efficient to the most efficient remains the same: G <
G+ < D1+ < D2+ < D3+ < DA+ < D5+. Although the greedy approaches
are repeated a great number of times, the gaps with respect to the results
provided by the descent methods are still significant (the gain with respect
to Gis around 6 % and the gain with respect to G+ is around 2 %). On the
other hand, for comparable computation times, the descent methods D1+
to Db+ provide average results quite similar; the results are only slightly
better when the number of shortest paths considered to build the conflict
graph is larger. This is why we did not consider larger values for the number
of shortest paths in our experiments.

5.4 Results for G29-500

We performed the same study as above for the graph G29-500 with the
number of wavelengths W equal to 5, 10, 20 or 30. We applied the seven
methods G, G+, D1+, D24, D3+, D4+, and D5+ to these 4 instances. The
results for W = 5 are presented in Figure 10.

Then we compare the seven methods with equivalent computation times
and still with W = 5, following the comparison in triangle process (see
above). The results are presented in Table 5. This table gives also the time
required by each method.

Finally, we give in Table 6, the results obtained with 5, 10, 20 or 30
available wavelengths.

Table 4: Comparisons in triangle of the methods G, G+, D1+, D2+, D3+, D4+ and D5+ for the
instance G57-500 with W = 20

Time G G+ Di+ D2+ D3+ D4+ D5+
0.02 s 388.59

191s 400.86 404.63

2.28 s 400.93 405.16 425.34

3.28s 401.08 405.89 426.16 426.35

5.11s 402.42 408.72 426.95 427.10 427.58

8.04 s 402.85 410.39 427.42 427.75 428.28 428.69

12.27 s 403.43 410.51 427.99 428.67 428.81 428.96 429.13

60 s 405.62 413.85 429.94 430.14 430.67 431.26 431.59
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Figure 10: Results for G29-500 with W =5

Here again, the descent approaches D1+ to D5+ provide better results
than the greedy methods G and G+. The gain of the descents with respect
to G exceeds 40 % for small values of W: it reaches almost 45 % for D5+
with W =5 available wavelengths. Even for higher values of W, for which G
provides solutions closer to the optimum, the descent methods still permit
to improve these solutions (gain of 7 to 8 % for W = 30). However the
ranking between the descent methods becomes less clear: they all provide
results very close, just slightly less good for D14. For the same computation
time (60 s, W= 5), the post-optimization method combined with the greedy
method G yields a gain of 1.5 % whereas the gain produced when considering

the descent methods with respect to the greedy method is very large, around
25 %.

5.5 Results for G57-1000

We consider again the graph Gh7 representing an optical network and we
generate as previously a set of 1000 SLDs for this graph. First, we present
the results obtained when considering 10 available wavelengths: Figure 11
gives the average values of the solutions provided by the various methods,
and Table 7 presents the results for the same computation times. Finally, we
give in Table 8 the results for various numbers of available wavelengths: 10,
20, 30, 40 and 50.

Here again, the methods D1+ to D5+ give clearly better results than G
and G+, with a gain with respect to the greedy method G reaching almost
30 % for the small values of W. For larger numbers of available wavelengths,
the gain is smaller but remains significant (around 3.7 % for W = 50). As
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Table 5: Comparison in triangle for G29-500 with W =5

CPU time G G+ Di+ D2+ D3+ D+ D5+
0.005 s 171.5

0.22s 188.20 179.79

043 s 190.35 190.10 243.27

1.31s 192.87 196.26 245.71 246.49

3.08 s 194.76 193.71 246.57 247.57 247.22

512 s 195.78 195.64 247.33 248.33 247.78 247.83

897s 197.02 197.80 247.86 248.83 248.60 248.27 248.18
60 s 200.15 203.17 249.61 251.00 251.04 250.91 250.14

Table 6: Results for G29-500 with various number of wavelengths W

w G G+ Di+ D2+ D3+ D4+ D5+
5 171.50 179.79 243.27 246.49 247.22 247.83 248.18
48 % 418 % 437 % 442 % 445 % 44.7 %
0.0048 0.22 0.43 1.31 3.08 5.12 8.97
10 257.69 273.32 325.49 327.61 328.07 328.21 327.99
6.1 % 26.3 % 27.1 % 273 % 274 % 273 %
0.0078 0.485 0.74 1.78 3.27 6.09 11.50
20 365.48 384.32 415.19 417.40 417.77 417.84 418.12
52 % 13.6 % 142 % 14.3 % 143 % 14.4 %
0.012 1.39 1.49 271 3.99 7.02 12.55
30 437.54 459.82 469.85 471.14 470.89 471.18 470.89
51 % 74 % 77 % 76 % 77 % 76 %
0.015 1.98 2.19 3.05 4.80 7.69 3.50

previously, the descent methods give close results, a little less good for D1+.
For the same time (300 s, W= 10), the post-optimization permits to improve
G with a gain of 3 %. The gain of the descent methods relative to G remains
well above, around 21 %.

5.6 Results for G29-1000

In this section, we come back to the graph G29, but with 1000 SLDs randomly
generated. The results obtained with 30 wavelengths are displayed in
Figure 12 and in Table 9; Table 9 gives the results of the comparisons in
triangle, ¢.e. when the CPU times are the same for the different methods.
Table 10 provides the results obtained when 10, 20, 30, 40 or 50 wavelengths
are available.

Asin the previous sections, the results provided by the methods D1+ to
D5+ are significantly better than the ones of methods G and G+, with
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Table 7: Comparison in triangle for G57-1000 with W = 10
Time G G+ Di+ D2+ D3+ D4+ D5+
0.03 s 481.55
2.28 s 503.49 506.74
494 s 505.92 514.77 613.79
10.96 s 508.07 518.83 616.13 620.54
23.34s 511.50 523.61 617.95 622.50 622.71
4523 s 513.40 526.53 619.00 623.61 623.93 623.37
69.78 s 514.35 528.94 620.00 624.27 624.93 624.25 624.32
300 s 517.54 533.63 621.97 626.41 627.12 627.30 626.95

gains with respect to G larger than 37 % for small values of W. When W
increases, the gain with respect to G decreases, but remains important, for
instance about 4.4 % for W = 50. As above, the results computed by the
descent methods are near each other. For a same CPU time (namely, 300 s
with W= 30), the post-optimization method brings a relatively important
improvement to G, about 4.4 %, while the gain due to the descent methods
with respect to G is about 11.6 %.

6. Conclusion

It is well-known, in combinatorial optimization, that the most difficult,
when considering heuristics, consists in reducing the gap existing between
the results provided by the heuristics and the optimal values. The experiments



96 OLIVIER HUDRY

Table 8: Results for G57-1000 with various number of wavelengths W

w G G+ Di+ D2+ D3+ D4+ D5+
10 481.55 506.74 613.79 620.54 622.71 623.37 624.32
52 % 275 % 28.9 % 29.3 % 295 % 29.6 %
0.034 2.28 4.94 10.96 23.34 45.23 69.78
20 665.08 701.37 7717 777.16 778.68 779.87 781.50
55 % 16 % 16.9 % 17.1 % 173 % 175 %
0.047 5.99 8.88 15.98 29.29 58.35 79.63
30 788.76 820.24 863.67 867.54 868.84 869.67 870.79
4% 95 % 10 % 10.1 % 10.3 % 10.4 %
0.060 9.94 15.38 21.13 35.15 57.54 86.72
40 870.45 901.64 924.51 926.59 928.27 928.17 928.62
3.6 % 6.2 % 6.4 % 6.6 % 6.6 % 6.7 %
0.069 13.64 17.86 28.74 44.71 61.00 87.92
50 931.30 960.23 965.47 965.47 965.67 965.91 965.92
31 % 37 % 3.7 % 37 % 3.7 % 37 %
0.076 15.68 18.29 28.60 43.94 61.73 87.23

reported in Section 5 as well as others, not reported here, show that, from
this point of view, the two features presented in this article, 7.e. the post-
optimization method and the formulation of the problem as the search of
independent sets, are very beneficial.

Compared to the greedy method G adapted from Skorin-Kapov (2006),
these two features allow to significantly increase the number of SLDs that
can be satisfied. When the number of available wavelengths is small, the
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Figure 12: The seven methods G, G+, D1+ to D5+ applied to G29-1000 for 30 wavelengths
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Table 9: Comparison in triangle for G29-1000 with W = 30

Time G G+ Di+ D2+ D3+ D4+ D5+
0.047 s 747.18
7.20 s 768.24 793.87
9.60 s 768.48 795.60 857.21
14.67 s 769.45 797.24 857.79 861.01
28.09 s 770.37 801.68 859.40 862.73 862.15
48 s 771.60 804.46 860.83 863.71 863.31 862.16
77.56 s 773.02 805.36 861.56 864.47 864.00 862.56 861.96
300 s 775.88 810.37 863.13 866.27 865.74 865.57 864.36
Table 10: Results for G29-1000 with respect to the number of wavelengths
w G G+ D1+ D2+ D3+ D+ D5+
10 423.46 447.55 577.87 581.84 583.12 583.84 583.30
57 % 36.5 % 374 % 37.7 % 379 % 377 %
0.022 1.39 2.78 8.37 20.46 39.65 64.72
20 612.30 650.97 746.98 753.47 753.84 754.52 754.06
6.3 % 22 % 23.1 % 23.1 % 232 % 232 %
0.037 3.70 6.20 11.51 24.37 44.67
30 747.18 793.87 857.21 861.01 862.15 862.16 861.96
6.2 % 14.7 % 15.1 % 154 % 154 % 154 %
0.047 7.20 9.60 14.67 28.09 48.00 77.56
40 848.66 898.86 930.54 931.98 932.46 932.39 932.67
59 % 9.6 % 9.8 % 9.9 % 9.9 % 9.9 %
0.055 11.34 13.92 21.61 32.45 53.08 93.87
50 926.85 967.33 968.17 968.09 968.02 967.95 967.95
44 % 45 % 4.4 % 4.4 % 44 % 44 %
0.060 12.78 10.73 17.29 35.46 51.63 80.89

descent methods may increase the number of satisfied SLDs by about 50 %
with respect to the results given by G. Even by repeating G a large number
of times, G remains far from the descent methods: the gains of the descents
with respect to G may reach, or even exceed, 25 % (it is the case for

instance for G29-500 with W= 5 and 60 seconds).

When the number of wavelengths increases or when the CPU time
increases so that it becomes possible to repeat all the methods (reaching 60
or 300 seconds in our experiments), this gain becomes less important because
the results obtained by G are better and become closer to the optimal
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values; but even in this case, the post-optimization method applied to G to
get G+ and the descent methods improve the results of G by some percents
and thus allow us to reduce a little more the gap between the obtained
results and the optimal values.

Globally, it appears from the results mentioned above and from other

results not reported here that the ranking of the methods according to
their increasing efficiencies is the following, even when we give the same
CPU times to all the methods: first G, which already provides good results,
then G4, then D1+ and last the methods D2+, D3+, DA+ and D5+, whose
results are very close and sometimes appear in different orders.
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